Robust Stochastic Optimization: Learning the Tails

نویسندگان

  • John C. Duchi
  • Hongseok Namkoong
چکیده

We develop and analyze a robust stochastic optimization framework that learns a solution which is robust to perturbations in the underlying distribution. We formulate a convex procedure for the finite sample approximation and provide statistical guarantees, showing that the finite sample problem concentrates around the robustified population objective. The robust solutions optimize performance on the tails of the input distribution instead of the average performance. Simulation experiments show that robust solutions outperform the empirical risk minimizer under adversarial perturbations in the underlying distribution by optimizing the performance on the tails of the input distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling

The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches‎. ‎In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques‎. ‎Jump processes are applied to model different and complex situations in cyber games‎. ‎Applying jump processes we propose some m...

متن کامل

A Combined Stochastic Programming and Robust Optimization Approach for Location-Routing Problem and Solving it via Variable Neighborhood Search algorithm

The location-routing problem is one of the combined problems in the area of supply chain management that simultaneously make decisions related to location of depots and routing of the vehicles. In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve th...

متن کامل

Demand-oriented timetable design for urban rail transit under stochastic demand

In the context of public transportation system, improving the service quality and robustness through minimizing the average passengers waiting time is a real challenge. This study provides robust stochastic programming models for train timetabling problem in urban rail transit systems. The objective is minimization of the weighted summation of the expected cost of passenger waiting time, its va...

متن کامل

A robust multi-objective global supplier selection model under currency fluctuation and price discount

Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss dec...

متن کامل

Robust uncapacitated multiple allocation hub location problem under demand uncertainty: minimization of cost deviations

The hub location–allocation problem under uncertainty is a real-world task arising in the areas such as public and freight transportation and telecommunication systems. In many applications, the demand is considered as inexact because of the forecasting inaccuracies or human’s unpredictability. This study addresses the robust uncapacitated multiple allocation hub location problem with a set of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016